Java:

Learning to Program with Robots

Chapter 06: Using Variables

Chapter Objectives

After studying this chapter, you should be able to:
e Add new instance variables to a simple version of the Robot class.

e Store the results of calculations in temporary variables and use
those results later in the method.

¢ \Write methods using parameter variables.
e Use constants to write more understandable code.

e Explain the differences between instance variables, temporary
variables, parameter variables, and constants.

e Extend an existing class with new instance variables.

Instance Variables in the Robot Class

6.1:

We’ll learn about instance variables by considering a simplified version
of the Robot class.

Instance variables are used to store information relevant to an entire
object (its attributes). Examples:

e a robot’s street, avenue, and direction
e a student’s ID number, address, GPA, and list of current classes
e a song’s track number, title, and duration.

Instance variables have the following important properties:
e Each object has its own set of instance variables.
e The scope extends throughout the entire class.

e The lifetime of an instance variable is the same as the lifetime of
the object to which it belongs.

A simplified version of Robot, called SimpleBot.

Paintable

Override paint to determine
the robot's appearance. Every

object displayed in SimpleCity

+void paint(Graphics2D g)
AN

must do this.
SimpleBot . .
. P Attributes (instance
int street -
0t Avenue <«——Variables) to remember the
int direction street, avenue, and direction.
+SimpleBot()
+void move() Methods that use and update
+void turnleft() . " "
'd tur | the instance variables.
+void paint(Graphics2D g)

Implementing Attributes with Inst. Vars.

6.1.1:

6.1.2: Declaring Instance Variables

public class SimpleBot extends Paintable

{

private int street = 4; /I Create space to store the robot’s current street
private int avenue = 2; /I Create space to store the robot’s current avenue

public SimpleBot()

{ super();
}
/Il Incomplete class!
}
Four key parts to an instance variable declaration:
1. An access modifier; use private except in rare circumstances.
2. A type such as int to store integers or String to store a string of
characters.
3. A descriptive name for the variable.
4. An initial value, placed after an equal sign.

6.1.3: Accessing Instance Variables

iImport java.awt.Graphics2D;
import java.awt.Color;

public class SimpleBot extends Paintable

{
private int street = 4; Il Create space to store the robot’s current street
private int avenue = 2; /I Create space to store the robot’s current avenue
0 1 2
public SimpleBot() 1
1 super(), .
}

public void paint(Graphics2D g)
{ g.setColor(Color.BLACK);

N
2 X
Ul
(@)
g-£illOval(2 £ 504+ B0 _5Q_5O): :
>) ’ I . 2x50
g.fillOval(this.avenue * 50, 4

this.street * 50, 50, 50);

int int int int int int

6.1.3: Accessing Instance Variables

g.filloval((this_avenue) * (50), (this.street) ~* . (50), (50);
2 50 4 50 50 50
int int
int int int int int int
g.Fil IOval([(this-avenue) * J [(this-street) * @ﬂ (50). (50));
2 50 4 50 50 50
100 200
void
e int int N\
int int int int int int
g-fiIIOvaI([(this-avenue)* @)} [(this-street) * , ,);
2 50 4 50 50 50
_ 100 200 Y,

(the oval is drawn)

6.1.4: Modifying Instance Variables

iImport java.awt.Graphics2D;
import java.awt.Color;

public class SimpleBot extends Paintable

{

private int street = 4; Il Create space to store the robot’s current street
private int avenue = 2; Il Create space to store the robot’s current avenue

public SimpleBot()...

public void paint(Graphics2D q)
{ g.setColor(Color.BLACK);
g.fillOval(this.avenue * 50, this.street * 50, 50, 50);

}

public void move()

{ this.avenue =this.avenue + 1, Il Incomplete
}

public void turnLeft()

{1}

6.1.4: Modifying Instance Variables

How does this move the robot?

SimpleCity contains a list of all the intersections, things, and
SimpleBots to show. It repaints the entire city about 20 times per

second:
while (true)

{ paint everything in layer O (the intersections)
paint everything in layer 1 (the things)
paint everything in layer 2 (the robots)
wait until 50 milliseconds have passed

}

When the robot moves, this code erases it from its old position and
redraws it In its new position.

Problem: What if the robot moves several times within 50
milliseconds?

6.1.4: Modifying Instance Variables

import java.awt.Graphics2D;
import java.awt.Color;

import becker.util.Utilities;

public class SimpleBot extends Paintable

{

private int street = 4; Il Create space to store the robot’s current street
private int avenue = 2; Il Create space to store the robot’s current avenue

public SimpleBot()...

public void paint(Graphics2D g)
{ g.setColor(Color.BLACK);
g.fillOval(this.avenue * 50, this.street * 50, 50, 50);

}

public void move()

{ this.avenue =this.avenue + 1, /I Incomplete
Utilities.sleep(400); /I sleep for 400 milliseconds so user has
/I time to see the move
}
public void turnLeft()
{}

/** A main method to test the SimpleBot and related classes.

* @author Byron Weber Becker */
public class Main
{
public static void main(String[] args)
{ SimpleCity newYork = new SimpleCity();
SimpleBot karel = new SimpleBot();
SimpleBot sue = new SimpleBot();

newYork.add(karel, 2);
newYork.add(sue, 2);

newYork.waitForStart(); // Wait for the user to press the start button.

for(int i=0; i<4; i = i+1)

{ karel.move();
karel.move();
karel.turnLeft();

}

sue.move();

}
}

6.1.5: Testing the SimpleBot Class

6.1.6: Adding Direction

public class SimpleBot extends Paintable

{

private int direction = 0; I/ Begin facing east

[** Turn the robot left 1/4 turn. */
public void turnLeft()

{ if (this.direction == 0) /I if facing east...
{ this.direction = 3; I face north
} else
{ this.direction =this.direction — 1,
}
}

}

6.1.6: Adding Direction

public class SimpleBot extends Paintable

{

}

private int east = 0;
private int south = 1;
private int west = 2;
private int north = 3;

private int direction = this.east; I/ Begin facing east

[** Turn the robot left 1/4 turn. */
public void turnLeft()

{ If (this.direction == this.east) /I if facing east...
{ this.direction =this.north; /I face north
} else
{ this.direction =this.direction — 1,
}
}

public class Constants
{

public static final int EAST = 0;
public static final int SOUTH = 1,
public static final int WEST = 2;
public static final int NORTH = 3;

—

public class SimpleBot extends Paintable

[..

private int direction = Constants.EAST,;

6.1.6: Adding Direction

[** Turn the robot left 1/4 turn. */

public void turnLeft()

{ If (this.direction == Constants.EAST)
{ this.direction = Constants.NORTH,;
} else
{ this.direction =this.direction — 1,

}
}

// Begin facing east

/I if facing east...
/[face north

6.1.6: Adding Direction

public class SimpleBot extends Paintable
{ ...
private int street = 4;

private int avenue = 2;

private int direction = Constants.EAST; I/ Begin facing east

public void move()

{ this.street = this.street + this.strOffset();
this.avenue = this.avenue + this.aveOffset();
Utilities.sleep(400);

}

private int strOffset()

{ int offset = 0;

If (this.direction == Constants.NORTH)

{ offset =-1;

} else if (this.direction == Constants.SOUTH)
{ offset =1;

}

return offset;

}

private int aveOffset()...

public void turnLeft()...

An accessor method answers the question “What value does attribute X
currently hold?”

In general:
public «typeReturned» get«Name»()
{ return this.«instanceVariable»;

}

For example:
public class SimpleBot extends Paintable

{

private int avenue = 2;

public int getAvenue()
{ return this.avenue;

}

6.1.7: Providing Accessor Methods

Instance variables, temporary variables, and parameter (variables) all
store information. Instance variables are different in the following
ways.

e Instance variables are declared inside a class but outside of all
methods. Parameter and temporary variables are declared inside a
method.

e Instance variables have a larger scope — the entire class. Parameter
and temporary variables have a scope no larger than a method.

e Instance variables have a longer lifetime — the same as the object
that contains them. Parameter and temporary variables disappear
when their method finishes executing.

6.1.8: Instance Variables vs. Other Variables

Case Study 1: Using Variables

We need to enhance the paint method to show the
direction the robot is facing. We’ll do this by adding a
“sensor” to the front of the robot.

public void paint(Graphics2D q)
{ g.setColor(Color.BLACK);

int bodyX = x coordinate of robot body's center
int bodyY =y coordinate of robot body's center
int sensorX = x coordinate of robot sensor’'s center
int sensorY =y coordinate of robot sensor’'s center

// Draw the robot’s body
g.fillOval(bodyX — 15, bodyY — 15, 2 * 15, 2 * 15);

/l Draw the robot’s sensor
g.fillOval(sensorX — 6, sensorY —6, 2 * 6, 2 * 6);

Case Study 1: Calculating Values

(this.avenue * 50, this.street * 50)

—(bodyX-15, botlyY-15)
. / _—(bodyX, bodyY)

. (sensorX-6, sensorY-6)
_.AsensorX, sensorY)

......

Half an intersectio

Size of each intersection
Robot's current positionr\,\

Int bodyX =this.avenue *50 + 50/ 2;

Distance from origin to robot's center /‘

Replace 50 with a more meaningful (but short) name:
Int 1ISize = Constants.INTERSECTION_SIZE;
Int bodyX =this.avenue * iSize + 1Size / 2;

Assuming the robot is on Avenue 2, we have:

int

Case Study 1: Calculating bodyX, bodyY

int int
int int int int
this-avenue)* + /
2 50 50 2

100 25
125

Case Study 1: Drawing the Body

public void paint(Graphics2D q)

{

—

g.setColor(Color.BLACK);

Int iISize = Constants.INTERSECTION_SIZE;
Int bodyX =this.avenue * iSize + iSize / 2;
Int bodyY = this.street * iSize + iSize / 2;

int sensorX = x coordinate of robot sensor’'s center
int sensorY =y coordinate of robot sensor's center

/l Draw the robot’s body
g.filloval(bodyX — 15, bodyY — 15, 2 * 15, 2 * 15);

/I Draw the robot’s sensor

g.fillOval(sensorX — 6, sensorY —6, 2 * 6, 2 * 6);

sensorX = bodyX + 15; sensorX = bodyX:
sensorY = bodyY; sensorY = bodyY - 15;

sensorX = bodyX - 15; sensorX = bodyX;
sensorY = bodyY; sensorY = bodyY + 15;
In general:

Int sensorX = bodyX + this.aveOffset() * 15;
Int sensorY = bodyY + this.strOffset() * 15;

Case Study 1: Calculating sensorX, sensorY

Case Study 2: Using Parameter Variables

Consider the following “family” of move methods:

public class SimpleBot extends Paintable

{

private int street = 4;
private int avenue = 2;

IIZ).l.Jb”C void move()...

public void moveFar()
{ Int howFar = 2;

for(inti=0; i <howFar;i=i+1)
{ this.move();
}

}

public void moveReallyFar()
{ int howFar = 3;

for(inti=0; i <howFar;i=i+1)
{ this.move();
}

}
}

Case Study 2: Implementing a Parameter

Without Parameters

With Parameters

public static void main(...)
{ SimpleBot r = new SimpleBot();

r.moveFar();
r.moveReallyFar();

}

public static void main(...)
{ SimpleBot r = new SimpleBot();

r.moveFar(2);
r.moveFar(3);

}

public class SimpleBot...
{ public void move()

[..
}

public void moveFar()

{ int howFar = 2;
for (inti =0; i <howFar; i=i+1)
{ this.move();
}

}

public void moveReallyFar()
{ int howFar = 3;
for (inti =0; 1 <howFar; i=i+1)

public class SimpleBot...
{ public void move()

{ ...

}

public void moveFar(int howFar)

{
for (inti=0; 1 <howFar; i=i+1)
{ this.move();
}

}

}

% public class Main public class SimpleBot...

o f{ {

< public static void main(...)

% { .. public void move()
SimpleBot sb = new Simple...; { ...

@)

= }

©

S sb.move(): public void move(int howFar)

e sb.move(b); { ...

L sb.move(0, 0);]

o }

5 } public void move(int str, int ave)

= { ..

S }

= }

0p)

&

8 In each case, we can tell which move method to use. So can Java!

This is called overloading: when two or more methods have the same
name and return type, but parameter lists (different number of
parameters or different orders to the types).

Case Study 2: Parameters in Constructors

Parameters are often used in constructors to initialize instance
variables:

public class SimpleBot extends Paintable
{

private int street==4,

private int avenue==22;

private int direction=—Censtants-EAST,

public SimpleBot(int aStreet, int anAvenue, int aDirection)
{ super();

this.street = aStreet;

this.avenue = anAvenue;

this.direction = aDirection;

}

—

6.3: Extending a Class with Variables

Imagine a special kind of robot, called a LimitedBot that can hold only
a limited number of things. Such a robot needs two additional pieces
of information (attributes):

e How many things can | hold?
e How many things am I currently holding?

sue: N

/ Limited Bot \

Larel [/ SimpleBot \ -

) street:| 1 .
avenue:|0

/ SimpleBot \ direction:{ EAST | |

street:| 1
avenue:|0 \ /

direction:| EAST maxHold:) 5

k j \ numHeld:| 0 /

SimpleBot object LimitedBot object

6.3.1: Declaring and Initializing Variables

public class LimitedBot extends SimpleBot

{

—

private int maxHold; /Il How many things can this robot hold?
private int numHeld = 0O; // How many things is this robot currently holding?

public LimitedBot(City aCity, int aStr, int anAve, Direction abDir,

Int maxCanHold)
{ super(aCity, aStr, anAve, aDir);— | Must match the signature

this.maxHold = maxCanHold; of a COnStrUCt.Or. I.n t.he
) superclass to initialize the

Instance variables In
“Robot within this robot.”

Initialize the instance
variables in this object.

6.3.2: Maintaining and Using Instance Vars

public class LimitedBot extends SimpleBot
{
private int maxHold; /Il How many things can this robot hold?
private int numHeld = 0O; // How many things is this robot currently holding?

public LimitedBot(City aCity, int aStr, int anAve, Direction aDir, int maxCanHold)
{ super(aCity, aStr, anAve, aDir);
this.maxHold = maxCanHold;

}

public void pickThing()
{ If (this.numHeld == this.maxHold)
{ this.breakRobot("Tried to pick up too many things.");
} else
{ super.pickThing();
this.numHeld = this.numHeld + 1;
}
}

public void putThing()
{ super.putThing();
this.numHeld = this.numHeld — 1;

}
}

To create a robot with a limited carrying capacity, we could
e extend SimpleBot (as we did).
e modify the code for SimpleBot
e make a copy of SimpleBot, rename it, and modify that code

Which is best?

6.4. Modifying vs. Extending Classes

§ All variables store a value. Differences are highlighted below.
@ Instance Var. | Temp. Var. |Param. Var. |Constant
f;ﬁ Are Inaclass but |inside a In the In a class but
« declared... |outside method. method’s outside
3 methods. parameter list. | methods.
2 Canbe In any method |in the method |in the method |in any method
v used... In the class. where where In the class.
=2 declared. declared.
'% Are In the In the where the In the
Q. initialized |declaration or |declaration. method is declaration.
g the constructor. called.
9_ Values are |until changed |until changed |until changed |as long as the
—1 stored... |orthe objectis |orthe block is |or the method |program is
g no longer used. |finished IS finished executing.
executing. executing.
The should always |is not IS not may be public
visibility |be private. applicable. applicable. or private.

modifier...

6.5.2: Comparing Kinds of Variables

If you...

Then...

need a value that never changes

use a final instance variable
(constant).

need to store a value for use later
INn the method but then discarded

use a temporary variable.

have a method that needs a value
provided by the client

use a parameter variable.

find yourself writing almost
Identical code several times

look for a way to put the code In a
method, accounting for the
differences with parameters.

need a value within many
methods within a class

consider using an instance variable.

need to implement an attribute

use an instance variable or
calculate it based on existing
Instance variables.

must store a value even with no
service Is being used

use an instance variable.

» public class CounterBotl... public class CounterBot?2...
8 { private int count = 0; {

©

b= public int numIntersections() public int numintersections|()
> { { int count =0;

8 while (true) while (true)

c { if (this.canPickThing()) { if (this.canPickThing())
% { this.count =this.count + 1; { count = count + 1,

c } }

:5 If (this.frontlsClear()) If (this.frontlsClear())
> { break; { break;

o } }

@© this.move(); this.move();

2 :

c return this.count; return count;

o 1 }

..} }

™

L0

©

Every temporary variable can be replaced with an instance variable.
Does it matter which you choose? Why?

Printing the value of a variable or expression is often helpful while
debugging.

public class LimitedBot extends SimpleBot
{ private int maxHold,; /l How many things can this robot hold?
private int numHeld = 0O; // How many things is this robot currently holding?

public void pickThing()
{ System.out.print("PickThing: numHeld=");
System.out.printin(this.numHeld);

if (this.numHeld == this.n
{ this.breakRobot("Tried to

6.6.1: Using System.out

} else
{ super.pickThing();

this.numHeld = this.nur | (o javah, ICreatory3.5\GE2001.exe
} PickThing: numHe 1d=8
} PickThing: numHeld=1

PickThing: numHe 1ld=2

}

6.6.2: Using a Debugger

Debug - LimitedBot.java - Eclipse SDK

File Edit Source Refackor

Mavigake Search Praojeck

| T = | % -0 -Q - | (@5

fﬁrﬁ Debug &3 =

E“‘-.

e G e e =

o

=131 Main [1ava application]

EI 1@ Main at localhost: 2176

EI m"ﬁ' Thread [main] {Suspended (breakp
- — LimitedBat. pickThing() line: 25
—— Maln.malnfil'rlnnf'l“l link: 17

E
[J| LimitedBat.java &2 m Main, java

- F¥% Pick up a thing. 1
* of thing=s, 1t breaks
= public void pickThingl()
{ 1f (this.numHeld ==
i this.breakBokbot ('

r el=se
{ =super.pickThingl)
this.numHeld = tfF

-

Fun ‘Window Help

L iE e

[-a

Speed

maxHold= 3

movesPersec= 2.0

meyCiby= Ciky (id=33)
myIcon= RobokIcon (id=35)
numHeld= z

oosition= Paosition (id=4&"

‘ £ Robots: Learning to program with Jav:

File

Application: Repainting

A graphical user interface often shows a
graphical representation of a numerical value -
such as the thermometer showing the
temperature.

This frame shows three instance of
Thermometer.

How might the following be used in this
program?

e Instance variables

e Temporary variables
e Parameter variables
e Constants

ES = 5 - (o x

Application: main method

public static void main(String[] args)

{ I/ Create three thermometer components.
Thermometer t0 = new Thermometer();
Thermometer t1 = new Thermometer();
Thermometer t2 = new Thermometer();

/I Create a panel to hold the thermometers.
JPanel contents = new JPanel();
contents.add(t0);
contents.add(tl);
contents.add(t2);

I/l Set up the frame.

JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT _ON_CLOSE);
f.setContentPane(contents);

f.pack();

f.setVisible(true);

/I Set the temperature of each thermometer.
tO.setTemperature(0);
tl.setTemperature(30);
t2.setTemperature(50);

6.7.1: Instance Variables in Components

public class Thermometer extends JComponent

{

—

public final int MIN_TEMP = 0;
public final int MAX_TEMP = 50;
private int temp = MIN_TEMP;

public void paintComponent(Graphics g)...

[** Set the thermometer's temperature.
* @newTemp The new temperature. */

public void setTemperature()

{
}

[** Get the thermometer's current temperature.
* @returns The thermometer's current temperature. */

public int getTemperature()

{
}

@ public class Thermometer extends JComponent A AN A
= { public final int MIN_TEMP = 0O;
© public final int MAX_TEMP = 50; =
c; private int temp = MIN_TEMP; >
o
> public void paintComponent(Graphics g) ~
@© { super.paintComponent(g); v |z
e . . . | 4 RE
= final int w = this.getWidth(); ~ E
O final int h = this.getHeight(); &2 AN
— ("
=3
final int bulbDia = h/10; =
final int bulbLeft = w/2 - bulbDia/2; 2
final int bulbTop = h - bulbDia; =~
final int stemWidth = bulbDia/3;
final int stemLeft = w/2 - stemWidth/2; Vb vy
final int stemHeight = h - bulbDia,; \
>

final int fluidHeight = stemHeight *
(this.temp - MIN_TEMP) / (MAX_TEMP - MIN_TEMP);
final int fluidTop = stemHeight - fluidHeight;

Temporary Variables

}

// paint the fluid

g.setColor(Color.RED);

g.fillOval(bulbLeft, bulbTop, bulbDia, bulbDia);
g.fillRect(stemLeft, fluidTop, stemWidth, fluidHeight);

/[paint the stem above the fluid
g.setColor(Color.BLACK);
g.fillRect(stemLeft, O, stemWidth, fluidTop);

}

public void setTemperature()

{

this.repaint();
}

6.8.1: The Named Constant Pattern

Name: Named Constant

Context: A special, unchanging value that is known when the
program is written is used one or more times in a program.

Solution: Use a named constant, for example:
private static final int DAYS IN_WEEK =7,
private static final int COST_PER_MOVE = 25;

In general,
«accessModifier» static final «type» «name» = «value»;

Conseguences. Programs become more self-documenting when
special values are given meaningful names.

Related Patterns: This pattern is a specialization of the Instance
Variable pattern. When constants are used to distinguish a set of
values, such as the four directions or MALE and FEMALE, the
Enumeration pattern is often a better choice.

6.8.2: The Instance Variable Pattern

Name: Instance Variable

Context: An object needs to maintain a value. It must be remembered
for longer than one method call and is usually required in more than
one method.

Solution: Use an instance variable declared inside the class but

outside of all methods. For example,
private int numMoves = 0;
private int currentAve,

An instance variable Is declared with one of two general forms:
«accessModifer» «type» «name» = «inittialValue»;
«accessModifer» «type» «name»;

where «accessModifer» IS usually private. The «type» In these
examples is int but may be others such as double, boolean, or a
reference type.

Conseqguences. The variable stores a value for the lifetime of the
object. It may be changed with an assignment statement.

Related Patterns: Temporary Variable;, Named Constant

6.8.3: The Accessor Method Pattern

Name: Accessor Method

Context: A class has private instance variables to protect them from
misuse. However, clients still need to access their values.

Solution: Provide a public query using the following template:
public «typeReturned» get«name»()
{ return this.«instanceVariablex»;

}

For example,
public class SimpleBot...
{ private int street;

public int getStreet()
{ return this.street;

}
}

Consequences: Restricted access Is provided to an instance variable.

Related Patterns: This pattern is a specialization of the Query
pattern.

Concept Map

6.9

final are w
modiﬁed with the keyword
are used to implement w

m
e m-ade availap]e

mstance
variables

accessor

methods

an assighment
statement

variables

temporaty
variables

parameter
variables

Summary

We have learned:
e how to use instance variables to implement the attributes of a class.

e that instance variables are similar to temporary and parameter
variables in that they all store values, but have important
differences In purpose, lifetime, and scope.

e how to Initialize instance variables where they are declared or in a
constructor.

e that the final modifier makes the first value assigned to a variable
the final value so that it can’t be changed.

e that the static modifier allows a constant to be accessed with a
class name rather than an object.

e how to extend a class with additional instance variables.
e how to print the value of a variable and view it with a debugger.

e that one must call repaint after changing an instance variable that
affects a component’s appearance.

